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Abstract

Connectionist learning models have had considerable empirical success, but it is
hard to characterize exactly what they learn. The learning of finite-state languages
(FSL) from example strings is a domain which has been extensively studied and
might provide an opportunity to help understand connectionist learning. A major
problem is that traditional FSL learning assumes the storage of all examples and
thus violates connectionist principles. This paper presents a provably correct
algorithm for inferring any minimum-state deterministic finite-state automata
(FSA) from a complete ordered sample using limited total storage and without
storing example strings. The algorithm is an iterative strategy that uses at each
stage a current encoding of the data considered so far, and one single sample string.
One of the crucial advantages of our algorithm is that the total amount of space, used
in the course of learning, for encoding any finite prefix of the sample is polynomial in
the size of the inferred minimum state deterministic FSA. The algorithm is also
relatively efficient in time and has been implemented. More importantly, there is a
connectionist version of the algorithm that preserves these properties. The
connectionist version requires much more structure than the usual models and has
not yet been implemented. But it does significantly extend the scope of connectionist
learning systems and helps relate them to other paradigms. We also show that no
machine with finite working storage can identify iteratively the FSL from arbitrary
presentations.
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preparation of this paper. This work was supported in part by ONR/DARPA
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1. Introduction

The ability to adapt and learn has always been considered the hallmark of
intelligence, but machine learning has proved to be very difficult to study. There is

currently a renewed interest in learning in the theoretical computer science
community [Va 84, Va 85, KLPV 87, Na 87, RS1 87, RS2 87) and a, largely separate,

explosive growth in the study of learning in connectionist networks [Hi 87]. One

purpose of this paper is to establish some connections (sic) between these two
research programs.

The setting for this paper is the abstract problem of inferring Finite State
Automata (FSA) from sample input strings, labelled as + or - depending on whether

they are to be accepted or rejected by the resulting FSA. This problem has a long
history in theoretical learning studies [An 76, An 81, An 871 and can be easily

mapped to common connectionist situations. There are arguments [Br 87] that
interacting FSA constitute a natural substrate for intelligent systems, but that issue

is beyond the scope of this paper.

We will start with a very simple sample problem. Suppose we would like a
learning machine to compute an FSA that will accept exactly those strings over the

alphabet {a,b} that contain an even number of a's. One minimal answer would be the

following two-state FSA.

b

Figure 1: A parity FSA

We adopt the convention that states drawn with one circle are rejecting states

and those drawn with a double circle are accepting. The FSA always starts in state

q0, which is accepting iff the empty string A is to be accepted. We will present in

Section 3 an algorithm that will always learn the minimum state deterministic FSA

for any finite state language which is presented to the learning algorithm in strict
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lexicographic order. There are a number of issues concerning this algorithm, its

proof and its complexity analysis that are independent of any relation to parallel and

connectionist computation.

It turns out that the "even a's" language is the same as the well-studied "parity

problem" in connectionist learning [Hi 87]. The goal there is to train a network of

simple units to accept exactly binary strings with an even number of l's. In the

usual connectionist situation, the entire string (of fixed length) is presented to a

bottom layer of units and the answer read from a pair of decision units that comprise

the top layer. There are also intermediate (hidden) units and it is the weights on

connections among all the units which the connectionist network modifies in

learning.

The parity problem is very difficult for existing connectionist learning networks

and it is instructive to see why this is so. The basic reason is that the parity of a

string is a strictly global property and that standard connectionist learning

techniques use only local weight-change rules. Even when a network can be made to

do a fairly good job on a fixed-length parity problem, it totally fails to generalize to

shorter strings. Of course, people are also unable to compute the parity of a long

binary string in parallel. What we do in this situation is much more like the FSA of

Figure 1. So one question concerns the feasibility of connectionist FSA systems.

There are many ways to make a connectionist version of an FSA like that of

Figure 1. One of the simplest assigns a connectionist unit to each state and to the

answer units + and -. It is convenient to add an explicit termination symbol - and

to use conjunctive connections [FB 82] to capture transitions. The "current input

letter" is captured as the activity of exactly one of the top three units. Figure 2 is the

equivalent of Figure I under this transformation.

Thus unit 0 corresponds to the accepting state qo in Figure 1 beccause when it is

active and the input symbol is I-, the answer + is activated. Similarly, activity in

unit 1 and in the unit for a leads to activity in unit 0 for the next time step. Note that

activity is allowed in only one of the units 0, 1, +, - for each step of the

(synchronous) simulation. In Section 5, we will show how the construction of Section

3 can be transformed into one which has a connectionist system learn to produce

subnets like that of Figure 2. There have been some attempts [Wi 87] to extend
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Figure 2: A connectionist parity network

conventional connectionist learning techniques to sequences, but our approach is

quite different. It would be intersting to compare the various techniques.

More generally, we are interested in the range of applicability of various learning

techniques and on how theoretical results can contribute to the development of

learning machines. The starting point for the current investigation was the

application of the theory of learning FSA to connectionist systems. As always, the

assumptions in the two cases were quite different and had to be reconciled. There is,

as yet, no precise specification on what constitutes a "connectionist" system, but

there are a number of generally accepted criteria. The truism that any machine can

be built from linear threshold elements is massively irrelevant. Connectionist

architectures are characterized by highly parallel configurations of simple

processors exchanging very simple messages. Any system having a small number of

control streams, an interpreter or large amounts of passive storage is strongly anti-

connectionist in spirit. It is this last characteristic that eliminated almost all the

existing formal learning models as the basis for our study. Most work has assumed

that the learning device can store all of the samples it has seen, and base its next

guess on all this data. There have been a few studies on "iterative" learning where

the guessing device can store only its last guess and the current sample [Wi 76, JB

81, OSW 86]. Some of the techniques from [JB 81] have been adapted to prove a

negative result in Section 4. We show that a learning device using any finite amount

of auxiliary memory can not learn the Finite State Languages (FSL) from unordered

presentations.
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Another important requirement for a model to be connectionist is that it adapt.

That is, a connectionist system should reflect its learning directly in the structure of

the network. This is usually achieved by changing the weights on connections

between processing elements. One also usually requires that the learning rule be
local; a homunculus with a wire-wrap gun is decidedly unconnectionist. All of these

criteria are based on abstractions of biological information processing and all were
important in the development of this paper. The algorithm and proof of Section 3 do

not mention them explicitly, but the results arose from these considerations. After a

pedagogical transition in Section 5a, Section 5b presents the outline of a FSL learner

that is close to the connectionist spirit. Error tolerance, another connectionist canon,

is only touched upon briefly but appears to present no fundamental difficulties.

In a general way, the current guess of any learning algorithm is an approximate

encapsulation of the data presented to it. Most connectionist paradigms and some

others [Va 84, Ho 69] assume that the learner gets to see the same data repeatedly

and to refine its guesses. It is not surprising that this can often be shown to

substitute, in the long run, for storing the data. As mentioned above, we show in
Section 4 that in general an algorithm with limited storage will not be able to learn

(even) FSA on a single pass through the data. But there is a special case in which

one pass does suffice and that is the one we consider in Section 3.

The restriction that makes possible FSA learning in a single pass is that the

learning algorithm be presented with the data in strict lexicographic order, that is,

± X, ± a, ± b, ± aa, .... In this case the learner can construct an FSA, referred to also

as the current guess, that exactly captures the sample seen so far. The FSA is non-

deterministic, but consistent -- every path through the FSA gives the same result for

every sampled string considered so far. It turns out that this is a minimal state FSA

consistent with the data and -an thus be viewed as best guess to date. The idea of
looking at strict lexicographic orders came to us in considering the algorithm of
Rivest and Schapire [RS1 87]. Their procedure is equivalent to receiving ± samples

in strict order.

Since the sample it presented in lexicographic order, our learning algorithm will

be able to build up its guesses in a cumulative way. If the empty string is (is not) in

the inferred language L, then the first guess is a machine with one accepting
(rejecting) state. Each subsequent example is either consistent with the current



guess, or leads to a new guess. The details of this comprise the learning algorithm of

Section 3. When a new state is added to the current guess, a set of incoming and

outgoing links to and from this new state are added. Consider the "even a's'"

language. With the sample +X, the initial accepting state qO has links to itself

under every letter. These links are all mutable and may later be deleted. When -a is

presented, the self-looping link under a is deleted and replaced by a permanent link

to a new rejecting state qI. We further add a mutable link from qo to qI under b, and

the whole set of links from q1. Figure 3 shows the guess for the "even a's" language

b

ab

a,b

Figure 3: An intermediate guess for the parity FSA

after the initial sample +X and -a. The link from qO to q1 under b is pruned when

+ b is presented. + aa will imply the deletion of the current self-link of qI under a,

and -ab will finally change the guess to that of Figure 1.

The remainder of the paper is divided into three major sections. Section 3

considers the general problem of learning FSA from lexicographically ordered

strings. An algorithm is presented and its space and time complexity are analyzed.

The proof of correctness for this algorithm in Section 3c uses techniques from

verification theory that have apparently not been used in the learning literature. In

Section 4 we show that the strong assumption of lexicographic order is necessary --

no machine with finite storage can learn the FSA from arbitrary samples. Section 5

undertakes the translation to the connectionist framework. This is done in two

steps. First a distributed and modular, but still conventional version, is described.

Then a transformation of this system to a connectionist network is outlined. Some

general conclusions complete the paper.
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2. Relation to previous work

The survey by Angluin and Smith [AS 83] is the best overall introduction to
formal learning theory; we just note some of the most relevant work. Our learning
algorithm (to be presented in the next section) identifies the minimum state
deterministic FSA (DFSA) for any FSL in the limit: Eventually the guess will be the
minimum state DFSA, but the learner has no way of knowing when this guess is
found. The learner begins with no a priori knowledge. We can regard the sample
data as coming from an unknown resettable machine that identifies the inferred FSL.
As stated above, our algorithm is an iterative strategy that uses at each stage a
current encoding of the data considered so far, and the single current sample string.
One of the crucial advantages of our algorithm is that the total amount of space used
in the course of learning, for encoding any finite prefix of the sample, is polynomial
in the size of the inferred minimum-state DFSA. Any encoding of a target grammar

requires 0(n2 ) space, and our algorithm is 0(n 2 ).

Iterative learning strategies have been studied in [Wi 76, JB 81, OSW 861.
Jantke and Beick [JB 81] prove that there is a set of functions that can be identified
in the limit by an iterative strategy, using the strict lexicographic presentations of
the functions, but this set can not be identified in the limit by an iterative strategy
using arbitrary presentations. The proof can be slightly modified in order to prove
that there is no iterative algorithm that can identify the FSL in the limit, using
arbitrary representations for the languages. We generalize the definition of an
iterative device to capture the ability to use any finite auxiliary memory in the

course of learning. Hence, our result is stronger than that in [JB 81].

Gold [Go 67] gives algorithms for identifying FSA in the limit both for resettable
and nonresettable machines. These algorithms identify by means of enumeration.
Each experiment is performed in succession, and in each stage all the experiments

performed so far are used in order to construct the next guess. Consequently, the
storage needed until the correct guess is reached is exponential in the size of the
minimum state DFSA. The enumeration algorithm for resettable machines has the
advantage (over our algorithm) that it does not specify the experiments to be
performed; it can use any data that identifies the inferred FSL. This property is not
preserved when the machines are nonresettable.
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Gold [Go 72] introduces another learning technique for identifying a minimum

state DFSA in the limit by experimenting with a resettable machine. This variation

is called the state characterization method which is much simpler computationally.

This technique specifies the experiments to be performed, and again has the

disadvantage of having to monitor an infinitely increasing storage area.

Angluin [An 87] bases her result upon the method of state characterization, and

shows how to infer the minimum state DFSA by experimenting with the unknown
automata (asking membership queries), and using an oracle that provides

counterexamples to incorrect guesses. Using this additional information Angluin
provides an algorithm that learns in time polynomial in the maximum length of any

counterexample provided by the oracle, and the number of states in the minimum-

state DFSA. This algorithm is comparable to ours in the sense that it uses

experiments that are chosen at will.

Recently Rivest and Schapire [RS1 87, RS2 87] presented a new approach to the
problem of learning in the limit by experimenting with a nonresettable FSA. They

introduce the notion of diversity which is the number of equivalence classes of tests

(basically, an experiment from any possible state of the inferred machine). The
learning algorithm uses a powerful oracle for determining the equivalence between

tests, and finds the correct DFSA in time polynomial in the diversity. Since the
lower bound on the diversity is log the number of states, and it is the best possible,

this algorithm is practically interesting. Again, the experiments in this algorithm

are chosen at will, and in fact they are a finite prefix of a lexicographically ordered

sample of the inferred language.

Another variation of automaton identification is that from a given finite subset of

the input-output behavior. Bierman and Feldman [BF 721 discuss this approach.

The learning strategy there includes an adjusted parameter for inferring DFSAs
with varying degrees of accuracy, accomplished by algorithms with varying

complexities. In general, Gold [Go 781 and Angluin [An 78] prove that finding a

DFSA of n states or less that is compatible with a given data is NP-complete. On the

other hand, Trakhtenbrot and Barzdin [TB 73) and Angluin [An 76] show that if the

sample is uniform-complete, i.e. consists of all strings not exceeding a given length

and no others, then there is a polynomial time algorithm (on the size of the whole

sample) that find the minimum state DFSA that is compatible with it. Note that the
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sample size is exponential in the size of the longest string in the sample. We can
regard our algorithm as an alternative method for identifying the minimum state

DFSA from a given uniform-complete sample. As stated above, our algorithm i '

much more efficient in space, since it does not access the whole sample, but rather
refers to it in succession, and needs just a polynomial space in the number of states in

the minimum state DFSA. The time needed for our algorithm is still polynomial in

the size of the whole sample, though logarithmic in an amortized sense, as we show

in Section 3d.

3. Sequential version for learning FSA

3a. Notation and definitions

We use the following notation and definitions:

* A finite-state automata (FSA) M is a 5-tuple (Q, E, 8, qO, F) where

* Q is a finite nonempty set of states.

e E is a finite nonempty set of letters.

* 8 is a transition function that maps each pair (q,o) to a set of states, where

qE Q and o E E. This function can be represented by the set of links E so that
(p a q) E E iffq E 8(p,o). Each link is either mutable or permanent.

* 8 can be naturally extended to any string x E E* in the following way: 8(q, X) =

{q}, and for every string x E Z* and for every letter Y E E, 8(q, x o) = {pJ
(3rEQ) (r (8(q,x) and p E8(r,o))}.

" qO is the initial state, qO E Q.

" F is the set of accepting states, F C Q. (Q-F is called the set of rejecting

states).

" The parity fq) of a state q E Q is + if q E F and is - if q E Q-F. By

extension, assuming for some qEQ and aE. that 8(q,o) t 0, we define the
parity of this state-symbol pair ffq,o) to be + if all successors of q under Y

are + and - if they are all -. If all r ( 8(q,a) do not have the same parity,

then fAq,a) is undefined.
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* A deterministic FSA (DFSA) is an FSA where the transition function 8 is from

QxF into Q.

* The language L(M) accepted by a DFSA, M, is the set {x E I* I 8 (qo, x) E F}.

* Given a regular language L, we denote by ML the (up to isomorphism)

minimum state DFSA s.t. L(ML) = L. QL is the state set of ML.

The late lower case letters v, w, x, y, z will range over strings. Given a current

FSA, the new string to be considered is denoted by w (the wrecker that may break

the machine). Lower case letters p, q, r, s, t range over names of states. Whenever

the current w wrecks the current guess, a new state, denoted by s (supplemental

state) is added. o, ),* qi will range over letters, and i, j, k, m, n over the natural

numbers.

* Mx = (Qx, F, 8x, qo, Fx) is the FSA, referred to also as the guess, after the

finite prefix ± X, ..., ± x of the complete lexicographically ordered sequence.

Ex is the corresponding set of links.

* For x E Z* , succ(x) stands for the string following x in the lexicographic order.

* The incremental construction of Mx admits for every state q, a unique string

minword(q) that leads from qo to q using permanent links only. The path for

minword(q) is referred to as the basic path to state q. These basic paths, which

cover all the permanent links, form a spanning tree on the set Qx.

* The guessing procedure also establishes for any Mx and any string y, unless y

= minword(q) for some q, the existence of a unique state p, a letter 4) and a

string z E E*, so that y = minword(p)4pz, and all the links from p under 4 are

mutable links. We refer to these state, letter and string as the tested state,

testec ;ctter and tested tail (respectively) for y in Mx. Figure 4 shows the tree of

all the paths for some string in some FSA, indicating the tested state p, tested

letter 4) and tested tail z:

We use the convention of representing a permanent link by =* and a mutable link by
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0q0

Figure 4

" For a given Mx and a word y, a path for y in Mx is right if it ends with an

accepting state and y E L, or it ends with a rejecting state and y f L.

Otherwise, this path is called wrong.

" For two strings x,y E* , and a language L, x = L Y if both strings are in L, or

both are not in L.

3b. The learning algorithm

Let L be the regular language to be incrementally learned. Initially MX is

constructed according to the first example ±X. QX = {qo}; EX = {q0 a q0 I o(E} and

each link is mutable. If AL, then q0 is an accepting state, otherwise it is a rejecting

one. minword(qo) is set to X.

Given Mx, the value minword(q) for every q(Qx, and a new string ±w, w =

succ(x), the learning algorithm for constructing the new Mw is given in Figure 5.
The algorithm is annotated with some important assertions (invariants in some

control points) written between set brackets I...}.

The subroutine delete-bad-paths (M, y, accept) is a procedure that constructs a

new FSA out of the given M, in which every path for y leads to an accepting state iff

accept = true. In the case y = w, delete-bad-paths breaks all wrong paths (if any) for
w in M. In the case y < w, the paths in M are checked against the behavior of the old

machine old-M. In any case, each bad path for y in M is broken by deleting its first

mutable link. Note that all the first mutable links along bad paths are from the same

tested state p for y in M. Furthermore, if all the paths for y in M are bad (and we will

show that this can happen only if y = w), then after the execution of delete-bad-paths

there will be no link from p under the tested letter for y in M. Such an execution will

be followed by an execution of insert-state.
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begin

old-M 4-Mx;
if wE L then accept-w*--true else accept- w--false;
new-M,-- delete-bad-paths (old-M, w, accept-w);

if there is no path for w in new-M
then {all the paths for w in Mx are wrongl

{old-M is consistent with all strings up through xl
repeat

new-M +-- insert-state;

{new-M has a new state and all feasible links to and from it}
{new-M may be inconsistent with previous strings}
y +-X;

while succ(y) < w

begin
y +-succ(y);
if all the paths for y in old-M lead to accepting states
then accept + true

else accept +-false;
{there exists a right path for y in new-M)
new-M <-delete-bad-paths (new-M, y, accept)

{new-M is now correct with respect to the strings , ... , y}

end;

old-M *- new-M;

{old-M is consistent with all strings up through x}

new-M *-- delete-bad-paths (new-M, w, accept-w)

until there exists a path for w in new-M;
output new-M {Mw will be the new FSA new-M)

end

Figure 5: The learning algorithm
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The procedure insert-state constructs a new FSA by extending the given spanning

tree defined by the permanent links in old-M. A new state s is added. Let p and 4) be

the tested state and tested letter for w in old-M. Note again that all the mutable

links from p under 4) had been deleted in the last execution of delete-bad-paths. A

new permanent link (p (P s) is added. minword(s) is set to minword(p)4). The parity

of s is set under the following rule: If minword(s) = w, then s is an accepting state iff

accept = true. In other words, in that case the parity of s is opposite to those states

at the ends of the paths for w in old-M. If minword(s) < w then s is an accepting

state iff all the paths for minword(s) in old-M end with accepting states. Next,

mutable links to and from the new state s are added according to the following rule:

For any existing state q, and for any letter o, if minword(s)o > minword(q), then add

the mutable link (s a q). Also, in the other direction, if the current links from q under

a are all mutable, and minword(q)o > minword(s), add the mutable link (q a s).

Note that this rule adds (for q = s) all possible self links for the new state s. In other

words, for every letter a, the mutable link (s a s) exists after insert-state.

Given Mx and w = succ(x), if all the paths for w in Mx are wrong, then the repeat

loop takes place. This loop defines the extension process, which is a repetition of one

or more applications of the insert-state procedure. It is easy to see that there will be

at most Iwi - Iminword(p)I insertions (applications of insert-state), where p is the

tested state for w in Mx. Suppose there are i insertions between Mx and Mw, each

adding a new state. We can refer to a sequence of length i of machines: Mow, Mlw,...,

Mi.w, each of which is the old-M at the beginning of the repeat loop. Mow is the old-

M as set to Mx at the beginning, the others are iteratively set in the body of the

repeat loop. For every j, 0 s j s i-1, the execution of insert-state defines a new

machine out of MJw, referred to as Mjw(l). Thereafter, for every j, 0 !j si-1, and for

every y, succ(N) s y < w, the execution of delete-bad-paths within the while loop

defines a new machine (possibly the same as the preceding one), referred to as

MJw(y), indicating that this machine is ensured to be consistent with those strings up

through y.

The algorithm was successfully implemented as a student course project by Lori

Cohn, using C.

Before going on to the correctness proof of this algorithm, we will discuss an

example over the alphabet E = {a,b}. Suppose that the unknown language L is
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"number ofa's is at most 1, and number of b's is at least 1" or bb*(. + ab*) + abb* as

given by a regular expression. Figure 6 below shows some of the guesses.

Initially, since the first input example is -X, qo is a rejecting state, having both (a.

b) self-loop mutable links. For the next example -a, delete-bad-paths does not

change the machine, hence Ma is the same as MA. When + b is encountered, the

mutable link (qo b qo) is deleted, and the repeat loop takes place (Mob = Ma '. A new

state s = q1 is added, and a new permanent link (qo b q1) is added. minword(ql) is

set to b. Since minword(ql) is the current example, q1 gets the opposite parity from

that of qo. Hence, q1 is an accepting state. The new mutable links are (qI a qI), (qI b

q1), (ql a qo) and (ql b qo). Note that (qo a q1) is not added, since a = minword(qo)a is
less than b = minword(ql). The new machine is Mob(A). Since all the paths (there is

only one) for a in Mob(X) are right with respect to the old machine Mo b, we get that
Mob(X) = M0 b(a). The only path for b is right, hence Mb is Mob(a). The examples -aa

and + ab do not change the current guess. When + ba is encountered, there exists a

right path <qo b q1, q1 a q1 > and there exists a wrong path <qo b q1, q1 a qo>. The

first (and only) mutable link (ql a qo) along the wrong path is deleted. A similar

treatment is involved for the example + bb. Note that at this stage Mbb is a DFSA,
but obviously L(Mbb) r L.

The next string -aaa does not change the current guess, but -aab causes a new

application of insert-state. A new state q2 is added, with minword(q2) being a. The

string aa is the first string that changes the machine while testing Moaab(b) against

the old machine M0 aab. The new mutable link (q2 a q1) is deleted. Other new

mutable links are deleted while retesting ab, ba and bb. The execution of delete-bad-

paths on Moaab(aaa) (= Moaab(bb)) deletes the two mutable links (q2 a q2) and (q2 a

qo), hence causing the nonexistence of a path for aab in the new machine. Thus, a
new insertion is applied, replacing the two mutable links (q2 a q2) and (q2 a qo) by a

new permanent link from q2 to a new state q3 under a. The retesting of the strings a,

b, and aa against M aab (= Moaab(aaa)) cause no change (no deletion) on Mlaab(X).

Some of the new mutable links are deleted while retesting ab, ba, bb and aaa. In

M 1aab(aaa) there exist three right paths for aab, and one wrong path, causing the

deletion of(q3 b q1), yielding Maab. Given this guess, Maab, the only path for aba is

wrong. Note that this path has two mutable links and the first one is now replaced
by a permanent link to the new accepting state q4. The retesting deletes some of the

new mutable links just recently added within the insertion of q4.
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When -baa is checked, given Mabb, there are three right paths and two wrong

paths. The tested state is qj, the tested letter is a, and the tested tail is a. The first

mutable link along the wrong paths is (qi a qj). Hence, this link is deleted leaving

(qi a q4). as the only mutable link from ql under a. This link is the first mutable link
along the three right paths. When -aaab is checked, given Maaaa, there are again

three right paths and two wrong paths. This time, two mutable links (q3 a qo) and

(q3 a q2) are deleted, each breaking a different wrong path. Note that this deletion

leaves only one right path for aaab, as the two deleted links served as second

mutable links along two of the original right paths for aaab in Maaaa. The

correctness proof will show that after the deletion process, there exists at least one
right path for the current sample. Finally, Mabba accepts the language L.

3c. The correctness proof

Next we prove that the guessing procedure is correct. The first observation is to

show that each Mx satisfies a set of invariants. Consider the following constraints

for a FSA M = (Q, E, 8, qo, F) and a given string x E E*:

(1) Consistency:

Vy_<x, all the paths for y are right.

(2) Completeness:

(Vq E Q)(V o E E)

((3 r E Q) (8(q,o) = {r} and (q a r) is a permanent link)

or

(3 Q' 9 Q) (8(q,a) = Q' and Q' * 0 and (Vr E Q') ((q a r) is a mutable link)))

(3) Separability:

(Vq, r E Q I q * r) (3 y ( E*) (minword(q)y # L minword(r)y and minword(q)y
- x and minword(r)y !- x)

(4) Minimality:

((Vq E Q) (Vy ( E*) I q E 8 (qo, y)) (y a minword(q))

(5) Minword-property:
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(Vq E Q) (x - minword(q) and there is a unique string, namely minword(q).

that has a path from qo to q using permanent links only)

Note.that some properties refer to a designated sample string x. We say that M y-

satisfies a set of properties if whenever some property in this set relates to x, and y is

substituted, then M satisfies the corresponding conjunct of properties.

The consistency constraint is the obvious invariant we would expect the learning

algorithm to maintain. The completeness constraint means that for every state and

for every letter there is either a permanent link that exits this state under this

letter, or else there is a nonempty set of links leaving the state under this letter, all

of which are mutable. The separability constraint together with Myhill-Nerode

theorem [HU 791 will lead to the claim that for each sample x, the number of states

in Mx is at most the number of states in the minimum-state DFSA for the inferred

language L. This can be established by continually preserving the minimality

constraint. The minword-property together with the completeness constraint

implies the existence of the spanning tree formed by the permanent links.

Following are simple facts that are implied by the above properties. We will refer

to these facts frequently in the sequel.

Fact 1. Vq(Q, Vy(E*, there is a path in M for y from the state q. (Implied by the

completeness constraint.)

Fact 2: VyEX*, if VqEQ, yt minword(q), then there exists a unique tested state,

tested letter and tested tail for y in M. (Implied by the completeness constaint.)

Fact 3: Vy(E*, if y s x, then all the paths for y from qo lead either to accepting

states, or they all lead to rejecting states. (Implied by the consistency constraint.)

Fact 4: VqEQ, minword(q) has a unique right path from qo to q through permanent

links only. (Implied by the consistency, completeness and minword-property

constraints.)

Fact 5: Vq(Q, Vy(E*, Vz(E*, if there exists a path for y from qO to q that uses at

least one mutable link, then yz > minword(q)z. (Implied by Fact 4 and the

minimality constraint.)
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The correctness of the algorithm of Figure 5 will be established by showing that

after each completion of the algorithm, yielding a new guess Mw by using the current

sample ± w, the five constraints are w-satisfied.

Clearly, MA -satisfies the constraints. Suppose (inductively) that Mx x-satisfies

these constraints, and let w = succ(x).

If all the paths for w in Mx are right, then Mw = Mx, and if Mx x-satisfies the

invariants, then Mw w-satisfies them.

By the minword-property constraint, w > minword(q) for each q. By Fact 2, let

p, 4 and z be the tested state, tested letter and tested tail (respectively) for w in Mx.

Consider any of the states r, so that (p 4) r) ( Ex. By the definition of the tested

elements, (p 4) r) is a mutable link. By Fact 5, minword(r)z < w. Therefore,

minword(r)z had been already checked. Hence, by Fact 3, all the paths for z from r

behave the same, i.e. 6x (r,z) Q Fx or Bx (r,z) g Qx - Fx. Thus, all the paths for w that

use the mutable link (p 4) r) are either all wrong paths, or all of them are right paths.

If there exist a wrong path and a right path for w in Mx, then by breaking each

possible wrong path for w by delete-bad-paths, the consistency constraint is

w-satisfied in Mw. The crucial point for establishing the completeness constraint in

this case is that the deleted mutable links are ensured to have a rival (another

mutable link) that will definitely exist in Mw. Hence, for every y 5 w, there exists a

right path for y in the new Mw. The other three constraints, separability,

minimality and minword-property are obviously w-satisfied.

If all the paths for w in Mx are wrong, the expansion process takes place. Suppose

there are i insertions in between Mx and Mw. We will show that the intermediate

FSA's Mow, Mjw, ..., Mi. 1w all x-satisfy the consistency, the completeness, the

minimality and the minword-property constraints. Moreover, all the paths for w in

Mjw (0 < j !i-1) are wrong, causing the re-application of insert-state.

Mow, being the same as Mx, obviously x-satisfies the consistency, the

completeness, the minimalty and the minword-property constraints, and all the

paths for w in Mow are wrong.
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Suppose for the moment that Miw, 0 !5 j - i-1, x-satisfies these four constraints.

By the minword-property constraint, w > minword(q) for each q. By Fact 2, let p, 4

and z be the tested state, tested letter and tested tail (respectively) for w in Mjw. Let

s be the new state in Mjw(A). In constructing Mjw(X), the whole set of mutable links

from p under (P in Mjw are deleted but they are replaced by the new permanent link,

(p 4t s). This, plus the fact that we add all possible self-looping links for the new state

s, establishes the part of the completeness constraint that ensures a nonempty set of

links for each state and each letter. The other part -- indicating that this set is either

a singleton of a permanent link, or a set of mutable links -- is easily implied by the

construction. By the definition of insert-state, and the fact that permanent links are

never deleted in delete-bad-paths, Mw() obviously w-satisfies the minword-

property. As for the minimality constraint, suppose by way of contradiction that

there exist a state q and a string y, so that there is a path for y that leads from q0 to q,

and y < minword(q). By the minword-property, this path uses at least one mutable

link. By the minimality constraint of MJw, at least one of those mutable links is a

new one just added while constructing MJw(k). Consider one of them, (r a t). (Note

that it is either the case that r = s or t = s.) From the way new links are added we

immediately get a contradiction to the mimimality assumption of y. Hence we

conclude that Mjw(X) w-satisfies both the completeness, the minword-property and

the minimality constraints.

The retesting process (within the while loop) checks the current machine Miw(y)

against the old machine MJw, that is assumed to be consistent up through x. The

whole retesting process involves defining a sequence of FSA's: Mjw(A), Mjw(succ(x)),

Mjw(succ(succ())), ..., Mjw(x). We will show that each MJw(y) is consistent up through

y, and that it w-satisfies the completeness, the minword-property and the

minimality constraints. For this we need to refer to another inductive hypothesis,

that will indicate, for each y > X, the similarity between M w(y) and Mjw(2). Let E'

be the set of mutable links that were added while constructing Mjw(AI) from MJw. We

will claim that each execution of delete-bad-paths along the construction of Mjw(y)

out of Mw(A) deletes (if at all) only links from E'. Moreover, in the next paragraph

we define a subset of E' that will definitely remain in MJw(x). A link in this subset

will be called a necessary link. Intuitively, these links will establish the existence of

right paths on Mjw(X) that reconstruct paths in MJw that use one of the mutable links

in Mjw from p under 4P.
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A link (s a t) in Mjw(A) is necessary ifft t s, w > minword(s)o, and there is a path

for minword(s)o from qo to t in Mjw. Figure 7 below shows how Mj" and Mjw(,) relate

to each other with respect to p, s and t. The mutable link (s a t) will definitely be

added while constructing Mjw(A), because by by Fact 5 applied on Mjw, minwordls)o

= minword(p)4 o > minword(t).

Figure 7

In order to prove that Mj + iw x-satisfies the consistency, the completeness, the

minword-property and the minimality constraints (given that Mjw satisfies these

conditions), we refer t/ another property, namely the similarity constraint: For each

j, 0 ! j ! i-1, and each y, X ! y 5 x, Mjw(y) is the same as Mjw(A) except for the

removal of some of the new mutable links that were added while constructing Mjw(x)

out of Maw. All the necessary links still exist in Mjw(y).

For every j, 0 5 j 5 i-1, and for every y, 0 :s y :5 x, we will prove the following

intermediate invariant: Mjw(y) satisfies the completeness, the minimality and the

similarity constraints, it y-satisfies the consistency constraint, and w-satisfies the

minword-property constraint.

We have already shown that Mjw(,) preserves the completeness and the

minimalty constraints, and that it w-satisfies the minword-property constraint.

Obviously, it satisfies the consistency up through A, and the similarity (to itself).

Thus, assume inductively that Mjw(y), X s y < x, satisfies the intermediate

invariant, we need to show that so does Mjw(succ(y)).
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If the current execution of delete-bad-paths causes no deletions (all the paths for

succ(y) are right with respect to old-M), Mjw(succ(y)) trivially maintains the

intermediate invariant.

Otherwise, we show that it cannot be the case that all the paths for succy) in

Mjw(y) are wrong with respect to old-M (= Mjw). Moreover, if there exists a wrong

path for succ(y), it will be broken by deleting one of the non-necessary new mutabh

links.

Assuming succ(y) has a wrong path in Mjw(y), we get by Fact 4 that succ(y)

minword(q) for each state q in Mjw(y). By Fact 2, let r, T and v be the tested state.

the tested letter and the tested tail for succ(y) on Mjw(y). (As before, r is the last state

reached by permanent links.) We distinguish between two possible cases:

1) r = s, i.e. succ(y) = minword(s)4qv.

Therefore, in Mjw, the tested state and the tested letter for succ(y) were p and

4p. Figire 8 shows the relation between Mjw and Mjw(y) with respect to p and s.

a necessary link

Figure 8

Let q, t be states so that (p 4) q) and (q qi t) are links in Mjw. By the similarity

constraint of Mjw(y), there must be some paths for succ(y) on Mjw(y) that use the

existing necessary link (s p t). By Fact 5 applied to Mjw(y), minword(t)v <

minword(s)xpv = succ(y). Finally, by the consistency constraint of Mjw(y), all the

paths for minword(t)v in Mjw(y) are right. Clearly, by Fact 3 applied to Mj'%V,

minword(t)v = L succ(y), which implies in turn that all these paths for succ(y) in
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Mjw(y) that use the existing necessary link (s y t) must be right. Hence, thiS

necessary link (s p t) will not be deleted. Other non-necessary mutable links
from s that establish wrong paths for succ(y) (and there exists such a wrong one)
will be deleted by the current execution of delete-bad-paths.

2) r t s. Hence, r, qp and v serve as the tested state, tested letter and tested tail
for succ(y) on Mjw also, and succ(y) = minword(r)pv. Figure 9 below indicates

the relation between Mjw and Mj,(y) in this case. Let t be a state in Mjw so that

some paths for succ(y) in Mjw use the mutable link (r Tp t) (right after the
permanent prefix). By the similarity constraint of Mjw(y), some paths for succ(y)

on Mjw(y) use this existing mutable link. Again, by the consistency constraint,

Figure 9

Fact 3 and Fact 5 applied to Mjw(y), all the paths in Mjw(y) for minword(t)v

behave the same and are right. By Fact 3 applied to Mjw, minword(t)v = L

succ(y). Hence, all the paths for succ(y) in Mjw(y) that use (r p t) are right,
implying in turn that this (old) mutable link will not be deleted. By the

assumption, there exists a wrong path for succ(y) in Mjw(y). Hence, there exists a
new mutable link in Mjw(y), (r p s), that will be now deleted in order to break a

bad path. This new mutable link is clearly a non-necessary one.

This terminates the discussion on the relation between Mjw(y) and Mjw(succ(y)),

and based on this we can easily conclude that the intermediate invariant is satisfied

by Mjw(succ(y)). Consequently, Mjw(x) satisfies this intermediate invariant, and in

particular it is consistent up through x. For 0 5 j < i-1, Mi+ 1w = Miw(x). We get
the desired hypothesis that this Mj + Iw x-satisfies the consistency, the completeness



22

and the minimality constraints, and that all the paths for w in this new machine are

wrong. Since Mjw(x) w-satisfies the minword-property constraint, and there exists a

wrong path for w in Mjw(x), we get by Fact 4 applied to Mjw(x) (= M . 'w ) that Mj 1,"
x-satisfies the minword-property constraint. For j = i-1, we break all the wrong

paths for w on Mi-lw(x) by deleting the first mutable links along them. By similar

arguments as above, we get that the new Mw w-satisfies the consistency, the

completeness, the minword-property and the minimality constraints.

The last thing to be shown is that Mw (obtained after the extension process) w-

satisfies the separability constraint.

Suppose that in executing the repeat loop we have inserted i new states. For 0 _ j
s i-1, let sj+ 1 be the new state added while constructing Mjw(X) from Mjw. Obviously
Qw = Qx U {sl,..., si}.

We say that two states q, r are w-separable if 3y E E* such that minword(q)y r L

minword(r)y, where minword(q)y 5 w and minword(r)y < w.

We prove by induction on j, 0 s j :s i, that each pair of states in Qx U {Sk I k Sj } is
w-separable. The basic assumption, for j = 0, is directly implied from the fact that

Mx w-satisfies the separability constraint.

Assuming that each pair of states in Qx U{sk I k !5 j and j < i } is w-separable, we

have to show that each state in this set is w-separable from sj + 1. Formally, let Q be

the state set of Mjw, we need to show that (Vq E Q) (3y E £*) (minword(q)y =L

minword(sj + I)y and minword(q)y < w and minword(sj+ 1)y!5 w).

Let p, 4) and z be the tested state, tested letter and tested tail for w in Mjw, and w

= minword(sj + Oz. Let q be an arbitrary state of Mjw. 'We distinguish between the

case where q was connected to p in Mjw through the mutable link (p 4 q), versus the

case where they were not connected like this.

1) Mjw has the mutable link (p 4) q). By the corresponding execution of delete-

bad-paths, this link will be deleted and replaced in Mjw(X) by the new permanent

link (p 4) ) +1). (p 4P q) was deleted since all the paths for w = minword(sj + 1)z on

Mjw were wrong. By Fact 5 applied on Mjw, minword(q)z < minword(p))z = w.

By the consistency constraint of Mjw, all the paths for minword(q)z in Mjw are
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right. Hence, mznword(sj+l)z rL minword(q)z, mznword(sj-1)z = w and

minword(q)z < w.

2) The link (p 4) q) does not exist in Mjw. There can be two different sub-cases

under this condition. The first one is that (p 4 q) had never been added while

constructing one of the previous FSA's. The second sub-case is that (p 4) q) has

once been deleted. Note that in each of the previous FSA's, the links that leave p

under 4P are always mutable links (and Mjw(A) will be the first FSA having a

permanent link from p under 4). Hence, if (p q) has been once added, and

thereafter deleted, the deletion was due to an execution of delete-bad-paths.

2.1) (p 4p q) had never been added. Since it is not the case that there exists a

permanent link from p under 4) (establishing a possible reason for not adding (p 4P
q)), it must be that minword(p)) < minword(q).

Now clearly there exists a mutable link in Mjw from p under 4). Let t be a state

such that (p p t) exists in Mjw. By the induction hypothesis, q and t (being two

distinct states in Mjw) are w-separable, hence 3y E E*, so that minword(q)y s w,

minword(t)y sw and minword(q)y * L minword(t)y. Figure 10 shows the relation

MJw(I): s

Figure 10

between Mjw and Mjw(A) with respect to p, q and t.

By Fact 5 applied to Mjw, minword(t) < minword(p)4t. By the initial

assumption for this subcase, minword(p)) < minword(q). Thus, since

minword(q)y sw and minword(t)y sw, we get that both minword(t)y and

minword(p)4)y are less than w. By the consistency constraint of Mjw, all the paths
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for minword(p))y, and all the paths for minword(t)y are right, and clearly

minword(p)py =L mznword(t)y. Since y is separating between t and q, and

minword(p)4) = minword(sj+ 1), we can conclude that y is a sufficiently small tail

separating between sj + 1 and q.

2.2) The next subcase deals with the mutable link (p 4 q) being deleted due to

some string v, v !s x. (p (P q) has been the first mutable link along a wrong path

for v on some previous FSA. Thus, there exists y E E*, so that v = minword(p))y.

The automata in which the decision to delete (p (P q) has been taken was obviously

consistent with respect to minword(q)y, as minword(q)y < v by the minimality

constraint which is continually satisfied. This establishes the claim that

minword(p)Py gL minword(q)y. As minword(q)y < minword(p))y =

minword(sj+ 1)y - x, we get a perfect separating string for q and sj + 1.

This finishes the proof of the claim on the separability constraint.

Let RL be the equivalence relation (Myhill-Nerode relation) associated with L, so

that for x,y E E*, x RL y iff(Vz E E*) (xz = L yz). By Myhill-Nerode theorem [HU 791,

IQLI = number of equivalence classes of RL.

By the separability constraint, Vx E E*, IQxI <- IQLI. Thus, there exists x* E E*,

such that Vyx* IQyI = IQx*I (after reaching Mx* the extension process would never

be applied again). Consider such an FSA, My where y -> x*. Suppose there is a state

q E Qy for which there are at least two distinct mutable links (q a r) and (q a t). By

the separability constraint, 3 z ( E* such that minword(r)z r L minword(t)z. If both

links still exist while considering the string minword(q)az (by the consistency

constraint, minword(q)oz > y) then, at this stage, one of them will definitely be

deleted. Hence, eventually we will get a DFSA. Moreover, if Mx is a DFSA where

IQx < IQLI, then 3y>x so that the path for y in Mx is wrong. Therefore, we finally

conclude that eventually we will get a minimum-state DFSA isomorphic to ML. This

completes the correctness proof.

Having proven the correctness of the learning algorithm, we now consider some

properties of this process, mainly with respect to time and space complexity.
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3d. Complexity analysis

Given a current guess Mx, the value minword(q) for every q ( Qx and the

successor sample string ± w, we analyze first the time complexity. Let IQxI = n, jw
= m, and JEJ = a. Obviously, the size of the whole sample considered so far .

succ(W), succ(succ()), ..., w is exponential in m (greater than ar-1 ).

First we note that executing delete-bad-paths on Mx and w requires only

polynomial time with respect to the size of Mx and w. Notice that the algorithm does
not need to check every path of w in Mx, but rather to consider one path for each first

mutable link along paths for w in Mx. This is due to the observation we have already

made that if (p P q) is some first mutable link for w in Mx, then all the continuing
paths from q behave the same. Each path for w can be checked in polynomial time,

and there can be at most n different paths to be checked. Moreover, note that within

this process, that must be applied for each string, the tested state and tested letter

can be recorded, and this might later be used.

If insert-state is activated, then it can be done in polynomial time, gaining some

efficiency by using the recorded tested state and tested letter. The dominating step

is the addition of all possible new mutable links that obviously involves considering

each existing state q (and its minword), and each letter a. Insert-state can be
repeatedly activated, for at most m times, and it is generally much less.

The retesting while loop is repeated for each string y, succ(A) 5y <x. For each

such y, the condition that determines the value of the boolean variable accept can

again be checked in polynomial time. Note that, due to the consistency constraint,

only one path for y in the current old-M has to be checked to determine the behavior

of the old machine with respect to y. The total retesting process (reaching the case

for which succ(y) = w) can take exponential time in the size of the current example

w, since all previous strings are checked, but it is still polynomial in the size of the

whole sample considered so far. Such retesting happens very infrequently, in fact it

is invoked once per state insertion. Therefore, the amortized cost of the retesting

process is polynomial in the size of the current input. Finally, we conclude that the
whole amount of time needed for the learning algorithm is polynomial in n in an

amortized sense.
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Furthermore, the extension process can be somewhat improved. First we change

in insert-state, the rule on adding a new mutable link from an old state q to the new

one s under some letter a. The new rule states that we add (q o s) when two

conditions are met. The first one is the original one, namely that the current links

from q under a are all mutable, and minword(q)o > rninword(s). The second one is

that either minword(q)o - w or minword(q)o < w (so that the current parity of the

pair (q, a) is defined) and s is of the correct parity, i.e. f(s) = f(q,o) in the current M,.

This rule is obviously correct, since if all the current links from q under o are

mutable, and minword(s) < minword(q)o (so that (q a s) would have been added

under the previous rule), and moreover minword(q)o < w and f(s) t f(q,o) (so that (q

a s) would riot have been added under the new rule), then the retesting process will

definitely prune this new mutable link while considering y = minword(q)o. Hence,

omitting those links immediately in insert-state might achieve some efficiency in the

inspection of all possible paths for some y within the while loop.

A more significant improvement is due to the fact that within the retest process

(the while loop) only new mutable links (to and from the new state) might be deleted

as being first mutable links along wrong paths for some y. Consequently, we need

only check the following subset of the sample. For each state q and symbol a, such

that a new mutable link from q under a has been just added within the last execution

of insert-state, test the strings minword(q)oz that are smaller than w. Note that the

new rule for adding new mutable links has now a more considerable impact on the

performance, by omitting a whole set of strings from being checked. There are still n

XaIzI such strings, but IzI will usually be small and there even might be states for

which no string will need to be tested.

As stated in the introduction, one of the major goals that motivated this work was

to design an algorithm for learning an FSA that will require only a modest amount

of memory, much less than the sample size which is exponential in m. Clearly, the

storage needed for the current guess is proportional to n 2 X a, and the storage needed

for all the values minword(q), for each state q, is proportional to n. The easiest way

to envision the learning algorithm is to imagine that it uses two separate

representations -- one for new-M, and the other for old-M. Taken literally, this

would double the size of the storage needed for the current guess. A more efficient

solution is to indicate some links on the current guess as old ones, and thus analyze

both machines on "one" representation. Another improvement might be gained
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(with respect to the amount of storage needed for the algorithm) by modifying the
insertion process so as to avoid the need for storing minword(q) for each q. These
values might as well be computed for every new state by linearly traversing the
prefix-coded tree of the permanent links.

Let JQL = nL. As shown above, the current size n of the machine is at most nL.
Any two distir.-t states in ML are obviously separable. Moreover, it can be shown
that the shortest string that distinguishes between such pairs of states is at most of
length nL. Since each minword(q) is at most of length nL, we can conclude that the
maximum string after which the current guess is isomorphic to ML is of length linear

in nL. In order to prove this, consider a guess Mx for which JQxJ = nL and IxJ >
2XnL+ 1, and suppose (by way of contradiction) that Mx is not isomorphic to ML. In
other words Mx is non-deterministic, hence there exists a state p, such that there are
at least two distinct mutable links from p under some letter 4. Let t and r be those
states having incoming mutable links from p under 4). As indicated above,
Iminword(p) :5 nL, and there is a string of length at most nL that separates between
t and r. Hence, Mx admits two different paths for a word of length at most 2 X nL + 1,
one that leads to an accepting state, and the other to a rejecting one. This obviously
contradicts the consistency assumption of Mx. In summary, our algorithm could get
by with space proportional to a X nL2 to store its guess plus m for the current string.
This corresponds to the abstract notion of iterative learning of[Wi 76).

4. Iterative learning using finite working storage

In this section we will formally characterize some "'practical" properties of the
learning algorithm introduced in Section 3. Taking into account the limitation of
space in all realistic computations, the most important property of our algorithm is
that for every sample, given in a lexicographic order, the algorithm uses a finite
amount of space. The restriction on the strict order of the sample may seem to be too
severe. We will show in this section that this restriction is necessary for learning
with finite memory.

Our first definition follows the approach of[Wi 76, JB 81, OSW 86]:

Definition: An algorithm IT (iteratively) identifies a set of languages S iff for every
L E S, given the complete lexicographic sample < ± 1, ± succ(A), ± succ(succ(X)) ... >,
the algorithm defines a sequence of finite machines < Mo, M1, M2, ... >, so that Vi > 1
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Mi is obtained from the pair (Mi- 1, ± xi), where xi is the i-th string in the sample, and

3j so that bk _ j Mk = Mj and L(Mj) (the language accepted by the machine Mj) is L.

E

It is easy to see that the algorithm of Section 3 meets the requirements of the IT

definition. In other words, we exhibit an algorithm that IT identifies the FSL.

Moreover, it finds a minimum-state DFSA for the inferred language L.

We now define a weaker characterization of a learning algorithm. We allow

finite working storage in addition to that required for defining the current guess and

sample string. The ultimate goal will be to show that the restriction on the order of

the sample is necessary even for this kind of algorithm.

Definition: An algorithm FS-IT (iterative algorithm that uses finite storage)

identifies a set of languages S iff for every L E S, given the complete lexicographic

sample < ±,X, ± succ(X), ± succ(succ(X)), ... >, there exists a finite set of states Q, such

that the algorithm defines a sequence of configurations <(M0 , q0), M1, qi), (M2, q2),

...> that satisfies the following: Vi, qj E Q, Vi > 1, (Mi,qi) is obtained from the triple

(Mi-1, qi-1, ± xi), where xi is the i-th string in the sample, and 3j such that Vk L j Mk
= Mi and L(Mj) = L. Such a j (in the course of learning) is referred to as a "semi-

stabilization" point. Note that the states within the configurations after the semi-

stabilization point can still change.

Obviously, if an algorithm IT identifies S, then it also FS-IT identifies this set.

A (non-repetitive) complete sample for a language L is a sequence of its strings

< ± X1, ± x 2, ± x 3, ... > so that Vi, xi E L, Vi e j, xi e xj, and Vx E L 3i so that x = xi.

The ability to learn languages by presenting an arbitrary complete sample, rather

than the strict lexicographic one, obviously strengthens the characterization of the

learner. We denote the above situations by ITarb and FS-ITarb if we do not require

the sample to be in lexicographic order.

For a complete sample <± Xi, ±X2, ±x3, ... >, an algorithm that FS-ITarb

identifies a set of language S uses a finite set of states Q, and defines a sequence

<(Mo, qo), (MI, qi), ...> . Mi and qi E Q are referred to as the current guess and the

current state after the finite prefix < xj,..., ±xi>, Vi a 0.
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Theorem. There is no algorithm that FS-ITarb identifies the finite state languages.

Proof. Suppose, to the contrary, that an algorithm A FS-ITarb identifies the FSLs.

We will look for some FSLs that will lead to a contradiction.

Let Lo be Z*, for some alphabet Z.

For the lexicographically ordered sample for Lo, A defines the sequence < (MoO,

qoO), (M10, q10 ), ... >. By the definition of FS-ITarb and in particular due to the
finiteness of the working storage, there exists some semi-stabilization point, i, that

corresponds to some word x, such that the following two conditions are satisfied:

1) The current quess Mm0 , Vm > i, is the same as Mi0 and characterizes Lo. Call

this guess MLo.

2) There are infinitely many m's, m a i, such that qmO = qi0 (i.e. the state qjo

occurs infinitely often).

LetL 1 = {wE Z*Iw - x}.

For the lexicographically ordered sample for L1 < + X, ..., + x, -succ(x), - ... >, A
defines the sequence <(Mol , qo1), (Mi1 , q 11), ..., (Mi1, qil), (Mi+1I, qij+1), ... >.
Obviously, Vm, 0 ! m s i, Mm0 = Mm1 and qmO = qm1. In particular Mil = ML0

and qi1 = qi0 . By the infinitely repeating property of qi0 , and by the finiteness

condition on the set {qml I m a 0}, qi0 must coincide with some qm1 infinitely often.

In other words, there exists a j that corresponds to some word z, j > i, so that the

following three conditions are satisfied:

1) qj0 = q 0 .

2) Vm > j Mml = MJl and characterizes L1. Call this guess ML1.

3) There are infinitely many m's, m>j, such that qmO = q 0 and qml = qj1 (the

pair of states qiO, qj1 appears infinitely many times at the same points for the

strict ordered samples for Lo and LI).

Pick a place k, k > j, so that qk0 = qi0 and qkl = qjl. The existence of such a
place is established by the properties of the chosen j. Let y be the string at place k in

the lexicographically ordered sample of any language over E. Note that y > z.
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LetL2 = L1 U {wE *Iz < wy}.

For the following ordered sample < +X, ..., +x, +succ(z), ..., +y, -succ(x), ... -z.

-succ(y), -succ(succ(y)), ... >, A defines the sequence <(M0 2, q02 ), (M 12, q12 ), ... >.

From the above we get (see Figure 11):

(1) After the finite prefix < +XA, ..., +x> the current guess is ML0 and the state is

qiO.

(2) By the definition of z and y, after the finite prefix < + X, ..., + x, + succ(z),

+ y > the current guess is still ML0 , and the state is again qio .

(3) By the definition of z with respect to its occurrence in the strict ordered

sample for LI, after the finite prefix < + X, ..., +x, +succ(z), ..., +y, -succ(x),

-z> the current guess Mk 2 is ML, and qk2 = qjl.

(4) By the property of qjl, Vm > k, Mm2 = ML1 , and qm2 = qm1 .

Hence A cannot FS-ITarb identify L2 .

Thus we have shown formally that the FSL can be IT-identified (from

lexicographically ordered samples) but can not be ITarb-identified. The theorems

provide end-case results, but there is a wide range of possible presentation

disciplines between IT and ITarb. Obviouly enough, our algorithm will still identify

the FSL from presentations in which redundant strings happen to be missing. That

is, any w such that w = succ(x) and Mw = Mx could be missing from the sample

without effect. As stated above, for any FSL for which IQLI = n, namely an n-FSL,

all the strings longer than 2 X n + 1 will be redundant. Moreover, most strings of
length at most 2 X n + 1 could be missing from the sample. This follows because

there are only a X n2 links to be added or deleted and more than a2 x n + 1 strings of

length s 2 X n + 1. Therefore a teacher could, in principle, get by with a greatly
reduced presentation if she knew what to present. The same reduction could also be

used in the retest phase of our algorithm.
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L0 : + X,..., + x, ... + Z, + succ(z),..., + y, ...
-ML, q 0  IL,,, q 0  ML, %I

L +, ... x, -succ(x) ... , -z, -succ(z), ..., -y,
ML,, q, ML,, qjl ML, q1

-succ(y), -succ(succ(y)), ...
ML,, qk + 11 ML,, qk+21

L2: +A, ... , +X, +succ(z), ... +y, -succ(x), ... ,

MLo, q 0  ML,, q 0  MLI, qj1

-succ(y), -succ(succ(y)), ...
ML,, qk +P 1ML 1, qk+2 1

Figure 11

We conjectured that perhaps for an ordered presentation of some particular

subset, followed by an arbitrary sequence of the remaining strings, our algorithm
would be still applicable.

Let SL be the set {minword(q) I q( QL}, and let y be the maximal string in this set.
We easily found a counterexample that shows that the subset {x ( E* I x :5 y} does not

suffice, and it is not even the case that Qy -- the set of states in the last guess My -- is
the same as QL. We then examined a larger set. Let SL' be the set {x 1(3 p,q EQL) (x

minword(p)z and x t L minword(q)z and (Vz' E Z*) (minword(p)z' - L minword(q)z'

=# x < minword(p)z'))}. The intuition behind this set is to include all the least strings

that can distinguish between two distinct states in ML. First we observe that SL 9_
SL'. Consider some state p in QL. There must be some q in QL the parity of which
differs from that of p, hence minword(p) : L minword(q). Obviously, for every z' E
,*, minword(p) s minword(p)z'. Hence, minword(p) ( SL'. Now, let y' be the

maximal word in SL'. The following counterexample shows that even the subset {x E
Z* I x ! y'} does not suffice. Let L be the language (given as an example in Section 3):

"the number of a's is at most 1, and number of b's is at least 1." SL' = {X, a, b, aa, ab,
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ba, aab, aba}. After the finite prefix <,k, -a, +b ..., -aba>, Maha is as shown in

Figure 12.

Maaba
a~b

Figure 12

Obviously, Moba = ML. Moreover, let -bbaba be the next sample string. The rule

for breaking all wrong paths by deleting the first mutable links along them cannot

be applied in this case. The first mutable link along the bad path <q0 6 ql, qi b qi,
ql a ql, qj 6 qi, ql a qj > is the link <ql b q> that should remain in ML. In fact,

every other possible rule that determines the mutable link to be deleted, according to
its place in the bad path, would not work here. For every i = 1, 2, 3, 4, there is a bad

path whose i-th mutable link exists in ML.

It is an open question whether any characterization of the minimum training set

exists.

It is also easy to see intuitively why finite storage learners will fail on arbitrary
presentations. An arbitrary presentation can, for example, have only very long
strings for a very long time and the learner has no idea what to make of them. This

is the basic cause of the NP-completeness results of [Go 781 and [An 78] for minimal
DFSA learning. On the other hand, if the learning device knew in advance the size,
n, of the n-FSL, it might be able to collapse the long sample strings into equivalence

mnq0 
bunmu 

munNm ~ n mim nm
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classes. This is another open question. The realistic version of this is for the learner.

which has finite storage, bounded by some polynomial in n, to limit its guesses to M

with no more than n states.

There do seem to be some general consequences of the outcome of these open

questions. If, as we surmise, knowing a bound on n for the target n-FSL does not

permit FS-ITarb with the finite storage being bounded by a polynomial in n, then

learning simple examples first has inherent major advantages. If there are optimal

training presentations, it will be interesting to understand their nature. As we will

show in the next section, the algorithm of Section 3a works in a way that is

compatible with connectionist and thus (at least for some people) with neural

computation.

5. Distributed and connectionist versions

5a. Distributed realization

As we discussed in the introduction, there is no generally accepted

formalization of what precisely constitutes a connectionist model. In this section we

show how the algorithm of Section 3b can be translated into a network of simple

computing units that falls within the range of connectionist models. In particular,

the network involves only simple units that broadcast very simple outputs on all

their outgoing links. Learning is realized by local weight--change that restructures

the network. There is, of course, no interpreter, but there is some central control.

There are several places in the construction where system-wide parallelism holds,

but there are also sequential aspects that seem to be inherent. For any finite system

to recognize unbounded inputs, it will have to look at pieces of the input

sequentially. Also in the retest phase of our algorithm, it is necessary to test

individual samples ssequentially.

The conceptual distance from the algorithms and analysis above to the sketched

connectionist version is considerable and we will traverse it in two steps. We will

start with a realization in terms of a module-message model, like PLITS or CSP.

Each state of the target FSA will be represented by a module and there will be a

control module and several other fixed modules.

Each state-module, q, will have data structures for its activation state, its parity,

its minimal string minword(q), and its outgoing links to other states and other
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modules. We suppose that the system is synchronous and that the control module

broadcasts each letter of the input string, w, at the start of a major cycle. The first

benefit of the parallel implementation is that all paths for the target string can be

checked in parallel. Initially, qO is active. Each active module looks at the next

symbol, a, and sends an "activation" message along each of its outgoing links that

correspond to a. When these signals have been sent, any state that has not received

new activation inactivates itself, and the states that have received such signals are

active for the next cycle. There are three kinds of activation messages that are sent

by states along paths of w. Recall the notation p and (P for the tested state and tested

letter of w on the current machine. The first kind of an activation message is sent by

those states along the basic path for minword(p). This message indicates that no

mutable link has yet occurred. Let p be the first state to use mutable outgoing link, p

sends a message that encodes its identity, p, and that of the tested letter, 4p. Each

active module q that receives a message of the second kind, encoding the pair (p, 4P),

looks at the next symbol a, and sends an activation message of the third kind along

each of its outgoing links that correspond to a. This message encodes the triple (p 4)

q), indicating a specific first mutable link along a path for w. All successor states

that receive this kind of message send that same message. Note that each path is

represented by its first mutable link, encoded within the message that passes

through the corresponding suffix.

At the end of the string, marked by a terminator I- or by a control signal, the

states that are active report their corresponding first mutable links plus their parity

±. This could be reported directly to the controller or (more connectionist) by

sending activation to global variables (or modules) that represent good and bad

strings. The control now compares the provided answer and if all reports are right, it

goes on to the next string, as before.

If some parses are right and some are wrong, a deletion process corresponding to

the subroutine delete-bad-paths must be executed. As mentioned and proved in

Section 3, each of the first mutable links along paths for w corresponds either to a set

of right paths, or to a set of wrong paths. The controller can obviously identify all

paths by their first mutable links, and knows which ones were right or wrong from

the reported parity. It then composes a message to all the "bad" mutable links, and

sends this information. Each module that is the origin of a bad mutable link will

then delete the corresponding outgoing link, thus breaking a bad path for w.
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Finally, we need to model the state-addition and retest procedures. Clearly the

control can easily discover if all paths are wrong. A new state is "recruited" by

generating a new module, s, and initializing it with its parity, its path, minword(s)

and with its permanent link. All this information can be easily generated using the
data structure within the module that corresponds to the tested state p, namely the

one that identifies itself as the source of all the bad mutable links to be deleted at

that stage. With this information, the new state/module can establish links with old

states following the strictures of insert-state. Again, this can be done in parallel
except for the serialization within module s itself. The retest procedure is

sequential, the controller cycles through the required strings and tests them against

the old machine. The difference between the links of the old and new machines are

also part of the data structures of the appropriate modules. Of course, within each

string test, the parallel checking and deletion above still apply. Much of this will

carry over to the connectionist version, but there are also several differences.

5b. Connectionist realization

Connectionist models in the literature vary somewhat [RM 86, WF 87] but all are
restricted to simple units that pass only numerical messages and always send the
same number on each outgoing link. The links may have weights that modify the

value being received and many models also allow conjunctive connections like we

used in Figure 2. Rochester practice allows for a unit to have a small amount of

internal data and to be in one of a small number of different "states" which we will

denote here as "modes" to reduce confusion. The limited repertoire of connectionist

systems forces the use of more elaborate structures than the previous version. We
will present an outline of one such model.

The connectionist version of the FSA learner will have a control subnetwork that
will sequence and modulate the basic learning net. There will be "registers," banks

of units whose activation pattern represents a letter or a string of letters, like the top
row of Figure 2. The basic process of testing a string against the current guess works

as outlined in Figure 2. Each letter of the input string serves in turn as the gate on
the conjunctive connections from state-unit to state-unit. The conjunction of
activation of the prior state and the appropriate letter-unit leads to activation of the

next state-units along appropriate links. One way to have the state-units turn off

when they should is to have a just-sent mode. A unit in just-sent mode will
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inactivate itself (set its activation flag to zero) if it receives only a control signal for

the next cycle.

A somewhat similar mechanism can be used to mark the first mutable link along

each path. Suppose that permanent links have weight 1 and mutable links weight 4.

Let the activation rule for a unit be as follows: The initial state qo always sends

activation value 10 to start each string. If a subsequent state-unit gets input 10, it

also sends 10 because this was a permanent link. When a state-unit sees an input

value of 5, it knows that it is at the far end of the first mutable link in a path, and

will record which input link was active. It will also send out a lower value, say 4.

Units that receive either 2 or 4 will also send out 4 as a value. This effectively marks

the receiving end of the first mutable link in every path, with a tagged input in the

unit for that state marking the path.

Upon termination of the testing for some string, w, the global + and - units are

compared by control with the answer provided (as activation of another Winner-

Take-All pair). If all paths are right, then the next string is tried. If there are both

right and wrong paths, the deletion process must occur. There is no obvious way to

do this in parallel, but the following sequential scheme works. Assume that the

mechanism includes a "buffer" that can record the input string w and another buffer

that can be made to cycle through strings. Control recycles the input string (in

delete mode) until the unit having the first mutable links is encountered. That is, a

state-unit that is activated in delete mode and has its tag set sends a different signal
which is detected by the control net. Then each such state is tested sequentially and

the ones leading to wrong answers delete their corresponding incoming mutable

link. Deletion can be just setting the weight to zero. There needs to be some

mechanism for sequencing these states, e.g., enabling each state in sequential order.

The insertion process for the connectionist version involves even more technical

details. It is reasonable to assume that the learning net has unused state-units that
are connected to all the ones used thus far, one of these is "recruited" to be the new

state s. It is not hard to determine which link to s should be permanent; it is the one

from the state p with the first mutable links in the (wrong) parses of w =

minword(p)4z. The string w could be reparsed and the output of 5 from the states

that receive conjoined signals from p and 4 could info.-n the new state, s, that it

should set the weight of its active input link to be 1 (permanent). It is also
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reasonable to assume that the state-units can mark the current links from p under 4

as "old," and thus to be used only ir retest mode.

What we can not assume is that state-units, q, can store the minimal string

minword(q) and compare it with minword(s) to determine which (q o s) aod (s a q)

links should be added. Again, the apparent answer is to go sequential. We car.

assume that the control net has buffers for minword(s) and minword(q), minword(s)

is fixed for the addition process, but minword(q) cycles through all the other existing

states. The control net finds minword(q) by testing strings, and with this in the

buffer, the tests minword(q)o > minword(s) and minword(s)o > minword(q) can be

carried out by the control net. The signal to break the appropriate links can be

transmitted to the state-units involved. This leaves just the retesting process. The

obvious way to handle this is to have the control net cycle through every string y <

w and test and correct the current guess. The basic process of testing a string and the

deletion process work as before. Each unit needs to have an "old machine" and "new

machine" mode and to know which links go with each. Each string less than w is

tested in old machine mode and the answer is stored. Then the same string is tested

in new machine mode and the deletion process is invoked for all wrong paths.

In this design, each unit would need internal data for recording its number,

whether it is active, has an active first mutable link and is performing as the old or

new machine. It would need "modes" for just-sent, for normal testing, for deletion,

for recruiting and for pruning links. If we restrict ourselves to just state-less linear

threshold elements, the complexity expands by an order of magnitude.

Obviously enough, a fully worked out connectionist realization would be quite

complex and would be one of the most elaborate models yet built. Connectionist

models are at a very low conceptual level and this always leads to complications in

large problems. On the other hand, the construction outlined above does no great

violence to connectionist principles and could be turned into a connectionist FSA

learning machine. This would be much more general than any existing

connectionist learning network. Since the details of each parse play an important

part in the learning procedure, there are at least indirect connections with

explanation-based learning. But the case of learning from a perfect,

lexicographically ordered sample is a very special one. It is well worth exploring

how the algorithms of this paper could be modified to deal with less controlled

examples. An obvious approach is to change the delete process (of mutable links) to
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one that reduces weights to some non-zero value, perhaps halving them each time.

The question of how to revise the rest of the network's operation to properly treat

conflicting evidence is another topic worthy of further effort.
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